導讀:今天的 UWB 與 100 年前的火花隙前輩不同。盡管自近一個世紀前火花隙消失以來窄帶無線電一直主導著通信,但超寬帶正處于大規(guī)模復興的開始。
1912 年 4 月 14 日深夜,RMS 泰坦尼克號發(fā)送了一條求救信息:它剛剛撞上冰山,正在下沉。盡管廣播緊急無線信號今天是常見的,但在20世紀初,這是最尖端的技術。這得益于過去 20 年開發(fā)的寬帶無線電的發(fā)明:火花隙發(fā)射器( spark-gap transmitter)。
火花隙無線電由 Heinrich Hertz 在 1880 年代開發(fā),由 Guglielmo Marconi 改進,他于 1901 年成功地跨大西洋發(fā)送了第一個無線電傳輸。泰坦尼克號災難之后,使用火花隙發(fā)射機的無線電報迅速在大型輪船普及,1912 年的《無線電法》更是要求所有航海船只保持 24 小時的無線電值班?;鸹ㄏ稛o線電是當時最先進的技術,可實現(xiàn)船舶之間的無線通信,并在第一次世界大戰(zhàn)期間使用。
火花隙無線電的架構與我們目前用在手機、WiFi 網絡和藍牙設備的無線收發(fā)器架構有很大不同。現(xiàn)代窄帶通信系統(tǒng)調制連續(xù)波形射頻 (RF) 信號以傳輸和接收信息。但在當時,火花隙發(fā)射器通過電火花產生電磁波,并且沒有調制窄帶射頻信號?;鸹ㄊ鞘褂猛ㄟ^跨兩個導體之間的間隙的電弧放電的電容產生的。這些非常短的時間放電會在電線中產生振蕩電流,然后激發(fā)出一種電磁波,該電磁波輻射出去并且可以在很遠的距離內被電磁波拾取。根據眾所周知的時頻二元性原理,類似于電火花的時間上的短脈沖會產生頻率上的寬帶信號,這是二十多年來通信的基礎。
需要注意的有趣一點是火花隙收音機無法支持連續(xù)傳輸,例如聲音信號。一條消息必須由一系列火花組成,傳輸離散的信息片段,使其成為第一個數(shù)字收音機。這種特性非常適合傳輸摩爾斯電碼。然而,當時人們認為火花隙收音機不可能在不丟失信息的情況下傳輸連續(xù)的信號,如語音或音樂。香農和奈奎斯特早在幾十年前就展示了如何使用數(shù)字調制技術來做到這一點。
數(shù)字調制知識的這種差距,加上難以產生高功率火花隙傳輸是火花隙無線電的致命缺點。第一次世界大戰(zhàn)后,使用真空管開發(fā)了基于載波的發(fā)射器,產生可以攜帶音頻的連續(xù)波。如今,幾乎所有無線收發(fā)器都使用相同的架構,這一切都基于美國工程師 Edwin Armstrong 在 1918 年的工作。稱為超外差無線電,這種架構使用混頻將接收到的窄帶信號轉換為相對較低的中頻 (IF),即然后在基帶電路中處理。從 1920 年左右開始,這項創(chuàng)新催生了 AM 收音機,十年后又出現(xiàn)了 FM 收音機。到 1920 年代后期,唯一仍在使用的火花發(fā)射器是海軍艦艇上的傳統(tǒng)裝置。寬帶無線電實際上已經死了。
100 年后寬帶的重生
為什么 Apple 會在 2019 年發(fā)布帶有超寬帶 (UWB) 收發(fā)器的 iPhone 11,該收發(fā)器是在其新的 U1 無線處理器芯片上實現(xiàn)的。答案需要一些偵探工作來尋找可以追溯到上世紀中葉的線索。
第一條線索是 1930 年代和第二次世界大戰(zhàn)期間在世界各地的絕密實驗室開發(fā)的另一種基于脈沖的寬帶無線電技術:雷達。RADAR 的故事已經講過很多次了;它在不列顛海戰(zhàn)和太平洋海戰(zhàn)中都提供了關鍵優(yōu)勢。
為了更好地簡述本次的技術,我們來重溫一下雷達的原理。RADAR 能夠確定物體的范圍、角度和速度。戰(zhàn)后,基于脈沖的收發(fā)器再次開始獲得發(fā)展動力。從 1960 年代到 1990 年代,這項技術被限制在機密程序下的軍事應用,既是定位又是通信技術。到 1980 年代中期,美國天主教大學的 Harmuth 和 Sperry Rand Corp 的 Ross 和 Robbins 等 UWB 先驅的大量研究論文、書籍和專利變得可用。由于寬帶提供位置數(shù)據的獨特能力,這一重要的信息來源重新引起了人們對 UWB 系統(tǒng)的興趣。
蘋果對 UWB 的第一個用途是提供定位數(shù)據。定位支持增強現(xiàn)實 (AR)、虛擬現(xiàn)實 (VR)、游戲、設備恢復、文件共享和廣告信標等領域的許多應用。
被Wi-Fi擊敗
在上文中,我們講述了寬帶無線電的誕生。事實上,寬帶無線電的故事還沒有結束……
隨著 1990 年代無線通信需求的增長,超寬帶 (UWB) 的優(yōu)勢變得更加明顯。但是 UWB 系統(tǒng)的商業(yè)部署需要在頻率分配、諧波和功率限制等方面達成全球協(xié)議。隨著對 UWB 商業(yè)化興趣的增加,UWB 系統(tǒng)的開發(fā)商開始向 FCC 施壓,要求批準其用于商業(yè)用途。2002 年,聯(lián)邦通信委員會 (FCC) 終于允許未經許可使用的 UWB 系統(tǒng)。幾年后,歐洲電信標準協(xié)會 (ETSI) 制定了自己的法規(guī),遺憾的是與 FCC 法規(guī)略有不同。其他地區(qū)緊隨其后,通常與 FCC 或 ETSI 保持一致。
UWB 系統(tǒng)使用短時(即皮秒到納秒)電磁脈沖來傳輸和接收信息。它們還具有非常低的占空比,其定義為脈沖出現(xiàn)的時間與總傳輸時間的比率。根據 2000 年代制定的發(fā)射法規(guī),UWB 信號被定義為頻譜大于 500 MHz 的信號。大多數(shù)國家現(xiàn)在都同意 UWB 的最大輸出功率,定義為 -41.3 dBm/MHz。
隨著法規(guī)的到位,公司聯(lián)盟開始形成,以標準化物理層和媒體訪問控制 (MAC) 層。2002 年,WiMedia 聯(lián)盟成立,這是一個非營利性行業(yè)貿易組織,旨在促進 UWB 技術的采用、監(jiān)管、標準化和多供應商互操作性。2004 年,無線 USB 推廣組和 UWB 論壇緊隨其后。
為了理解這些聯(lián)盟所做的選擇,我們應該將它們置于語境中。
在2002 年,WiFi 還是一項相對較新的技術。802.11b 路由器于 1999 年推出,使用 2.4 GHz 頻段時的理論最大速度為 11 Mbit/s。802.11a 標準也是在 1999 年定義的,并承諾在 5 GHz 頻帶中的理論最大速度為 54 Mbit/s,但由于其較高的芯片組成本,在消費領域沒有受到關注。2003 年,802.11g 標準推出,在 2.4 GHz 頻段提供了 54 Mbit/s 的理論最大速度。盡管事實證明 802.11g 標準取得了巨大的成功,但數(shù)據速率仍然受到擁擠的 2.4 GHz 頻段的限制,該頻段是當時無線 LAN 的骨干,運行在這個頻段的還有微波爐和無繩電話!
正是考慮到這些限制,市場提出了新一代 UWB 無線電。隨著法規(guī)的出臺,人們很難抗拒支持 UWB 的高數(shù)據速率的承諾。事實上,F(xiàn)CC 在 3.1 和 10.6 GHz 之間分配的 7.5 GHz 帶寬對于無線通信工程師來說是極其寶貴的資源。這就是基于 UWB 多頻帶正交頻分復用 (OFDM) 以 480 Mbit/s 的數(shù)據速率提出短距離(即幾米)文件傳輸規(guī)范的方式。經過幾年的發(fā)展,第一個零售產品于 2007 年年中開始出貨。這在很大程度上是一種過度設計的無線電,以相對經典的方式多路復用多個寬帶寬載波,本身并不是類似于火花隙無線電的基于脈沖的無線電。
盡管當時 OFDM UWB 制造了很多噪音并且產品很有前途,但它在 2000 年代后期推向市場卻遭遇了一場挑戰(zhàn)——2008 年的大衰退,這導致消費電子產品的零售額大幅下降。此外,雖然不同的 UWB 聯(lián)盟都在開發(fā)新產品,但 WiFi 聯(lián)盟并沒有停滯不前。2006年,經過多年的發(fā)展和談判,他們發(fā)布了802.11n標準的初稿。它支持多路輸入和多路輸出 (MIMO) 概念以復用信道,其開發(fā)目的是提供高達 600 Mb/s 的數(shù)據速率。盡管該標準的最終版本在 2009 年 10 月之前并未發(fā)布,但支持該標準草案的路由器于 2007 年開始搶先發(fā)貨。
給OFDM UWB 棺材打上的最后一顆釘子來自技術本身。當時提出的OFDM UWB收發(fā)器RF架構的復雜性和嚴格的時序要求,導致產品成本相對較高,功耗低。
上述事件和技術過度設計的芯片組的結合標志著高速 UWB 無線電的消亡。當時 UWB 芯片組的領導者 WiQuest 在 2008 年初擁有 85% 的市場份額,于 2008 年 10 月 31 日停止運營。UWB 論壇因與 WiMedia 聯(lián)盟的方法不一致而未能就標準達成一致后解散。WiMedia 聯(lián)盟在將其所有規(guī)范和技術轉讓給無線 USB 推廣組和藍牙特別興趣組后于 2009 年停止運營。然而,藍牙特別興趣小組在同年放棄了作為藍牙 3.0 一部分的 UWB 的開發(fā)。
不幸的是,在第一個基于火花隙無線電的 UWB 系統(tǒng)退役幾乎整整一個世紀之后,這種基于 OFDM 無線電架構的 UWB 無線電的新迭代正在失寵。
然而,盡管困難重重,世界將不必再等一個世紀,就能看到新的和改進的 UWB 無線電實現(xiàn)。事實上,火花隙無線電將成為這次 UWB 復興帶來更多的靈感。
UWB的復興
在上文中,我們討論了過度設計的正交頻分復用 (OFDM) 收發(fā)器的超寬帶 (UWB) 的失敗。這標志著所提議的應用——短距離非常高的數(shù)據速率(即幾百 Mbps)無線鏈路的終結——而不是技術。事實上,UWB 的歷史有點復雜:當高速無線 UWB 提案開始衰落時,其他 UWB 應用正在蓬勃發(fā)展。
從二戰(zhàn)開始,微波系統(tǒng)的快速發(fā)展為UWB系統(tǒng)的發(fā)展鋪平了道路。在 1960 年代,勞倫斯利弗莫爾國家實驗室 (LLNL) 和洛斯阿拉莫斯國家實驗室 (LANL) 正在研究脈沖發(fā)射器、接收器和天線。這些研究項目并非純粹的學術研究;開發(fā)脈沖系統(tǒng)確實有很大的動力:UWB 可以提供超高分辨率,然后可以用于對象定位、表征和識別。到 1970 年代,UWB 雷達主要用于軍事應用。隨著研究的不斷進展,發(fā)現(xiàn)了其他應用,并且在 1990 年代末,多個 UWB 雷達被用于廣泛的應用:林業(yè)應用、城市地區(qū)的穿墻檢測、
為了真正理解超寬帶的吸引力,我們首先要掌握時頻二元性和傅立葉變換。簡單來說,這種對偶性表明,如果您有一個無限長的周期時間信號,它將具有無限小的帶寬。另一方面,如果您有一個無限短的脈沖信號,它將具有無限大的帶寬。換句話說,這意味著您可以用時間換取帶寬。你為什么要那樣做?這有多種原因,但一個非常重要的原因是實現(xiàn)超高分辨率定位。
確定射頻設備之間的距離有兩種基本方法:您可以使用接收信號強度 (RSS) 或信號的飛行時間 (ToF)。RSS 是一種實現(xiàn)起來非常簡單的技術,可以被任何無線收發(fā)器使用,這也解釋了為什么它被如此廣泛地使用。然而,它的準確性受到嚴重限制:兩個靜止物體之間的感知距離將根據其直接路徑上的障礙物而變化。例如,如果您有兩個設備相距 10 米,但被磚墻隔開,提供 12 dB 的衰減,您會認為這兩個設備相距 40 米。ToF 解決了這個問題。通過測量從一個設備到另一個設備所需的時間,您可以精確地提取兩個對象之間的距離。在
ToF 顯然是在空間中準確定位物體的方法。然而,一個缺點是你需要處理光速,這是相當快的。事實上,光傳播 10 厘米只需要 333 皮秒。如果要以厘米精度測量物體之間的距離,則系統(tǒng)需要亞納秒精度。實現(xiàn)這種精度的最簡單方法是發(fā)送時間非常短的信號,由于時頻二元性,這需要 UWB 信號。
使用 ToF 精確測量距離的可能性在很大程度上解釋了 UWB 在最近幾年的復興。準確定位市場在多個領域都在快速增長,未來幾年應該會繼續(xù)保持兩位數(shù)的增長。多家公司現(xiàn)在都加入了 UWB 的行列,最新的是 Apple,它為 iPhone 11 配備了 UWB 芯片 U1,這似乎是它自己的設計。憑借實施實時定位系統(tǒng) (RTLS) 的能力,UWB 能夠在包括工業(yè) 4.0、物聯(lián)網和車輛在內各種市場中實現(xiàn)大量新應用。
正如我們在本文中看到的,時間可以換取帶寬,這可以有利地用于定位。但它也可以提供其他優(yōu)勢。接下來,我們將探討 UWB 在許多無線應用中的另一個關鍵優(yōu)勢:極低的延遲。
低延遲為王
作為工程師,我們將延遲理解為觸發(fā)操作與其響應之間的時間間隔。從無線鏈路的角度來看,這是發(fā)送數(shù)據幀和接收數(shù)據之間的時間延遲。但是消費者對延遲有一種本能的反應。玩格斗和體育游戲的游戲玩家會體驗到延遲,因為在按下按鈕和在屏幕上看到預期動作之間存在延遲。這種延遲可能是游戲中生死攸關的問題!顯示器和外圍設備正在以減少的延遲(例如,240 Hz 刷新率游戲監(jiān)視器)進行積極營銷,因此,令人驚訝的是,有線外圍設備在游戲圈中仍然無處不在。
電線,就像人們記憶中那樣古老的裝置,在延遲方面的優(yōu)勢仍然無可爭議。
隨著對延遲更敏感的應用程序成為主流,如今對延遲的追求越來越強烈。例如,佩戴增強現(xiàn)實 (AR) 或虛擬現(xiàn)實 (VR) 耳機的設計師和游戲玩家會體驗到延遲,因為他們的動作和視覺反應之間存在令人不安的滯后。AR 和 VR 使用戶在最輕微的延遲開始時就容易暈車。此外,當角色在屏幕上的嘴唇與他們的聲音不同步時,家庭影院所有者就會詛咒這些延遲,雖然可以小心地延遲錄制的視頻以校準延遲,但需要現(xiàn)場干預的饋送無法從這種策略中受益。這種涉及實時交互的無線延遲問題很容易表現(xiàn)出來,就像在智能手機上打字并看到按鍵與通過無線耳機傳來的按鍵音頻反饋不同步一樣。一些手機制造商會通過讓鍵盤音頻反饋不通過無線耳機來隱藏這一限制。然而具有諷刺意味的是,在帶有準系統(tǒng)有線耳機的過時電話上使用現(xiàn)已失效的音頻插孔不會造成延遲問題!這個問題更深入,工業(yè)工程師將延遲視為關鍵傳感器和控制系統(tǒng)中不可接受的延遲。
總而言之,當前的無線技術無法提供可接受的游戲、AR/VR、實時視頻或工業(yè)物聯(lián)網體驗,因此這些應用在 2020 年仍然是有線應用的市場。
大腦通??梢员鎰e出幾十毫秒或更長時間的延遲,一些樂器演奏者能夠“感覺到”3 毫秒的延遲。無線延遲有多種原因。它首先是光速的結果,與電線類似。然而,在人類尺度上,光速并不是限制因素,因為 100 米的無線通信只會產生 333 ns 的延遲。第二個原因是收發(fā)器中的處理時間。但這通常不是限制因素,因為處理器通??梢栽趲孜⒚雰韧瓿蓪牟僮鳌5谌齻€原因也是最重要的一個原因是收發(fā)器可以傳輸其數(shù)據的速度。在無線收發(fā)器中,每個數(shù)據幀都必須完全接收后才能進行處理。這意味著傳輸和接收數(shù)據的速度是導致延遲的重要因素。例如,以 1 Mbps 的數(shù)據速率傳輸 1000 位幀將導致 1 ms 的延遲。這被稱為通話時間。除了通話時間外,還有媒體訪問控制層所需的時間,即MAC-Time,它與協(xié)議使用的通信棧有關,可能包括載波偵聽、幀確認、幀重傳、流控制等。MAC 時間因應用而異,與通話時間相比,MAC 時間可以從可以忽略不計變成主導因素。最終,MAC 時間通常與通話時間相關,因此可以壓縮通話時間的無線電能夠提供更短的延遲。
結合所有這些因素,很難公平地比較不同無線電的延遲。每種技術都有其目標應用,這意味著 MAC 層已相應開發(fā)。需要 99.999% 可靠性的無線鏈路不會有與盡力而為廣播系統(tǒng)相同的延遲。然而,延遲總是有限的,并且源自無線電的通話時間,這是一個很好的比較點。ZigBee 規(guī)范背后的 IEEE 802.15.4 標準提供 250 kbps 的數(shù)據傳輸速率,而 BLE 4.2 支持 1 Mbps 和 BLE 5 2 Mbps。這些數(shù)據速率為 BLE 提供了幾毫秒的通話時間,為 IEEE 802.15.4 提供了數(shù)十毫秒的通話時間。這些通話時間被 MAC 層進一步“放大”,并導致更長的整體延遲,可能超過 100 毫秒,
減少延遲的一個好方法是提高數(shù)據速率,Wi-Fi 很好地應用了這種方法。隨著 802.11 標準現(xiàn)在支持在單個鏈路上傳輸數(shù)百 Mbps 的數(shù)據,我們現(xiàn)在可以看到單個幀的亞毫秒級延遲。然而,這種延遲是以功耗為代價的。Wi-Fi 標準支持超過 2000 字節(jié)的大數(shù)據包,并使用需要耗電電路的復雜調制。
延遲實際上是 5G 網絡發(fā)展背后的主要驅動因素之一。承諾幾毫秒的延遲,5G 將提供比 LTE 快10 倍的 改進。然而,5G 無線電具有與 Wi-Fi 類似的缺點,即功耗非常高,阻礙了它們在大多數(shù)物聯(lián)網設備中的使用。因此,我們可以在幾毫秒內將數(shù)據路由數(shù)百公里,但使用較低功率的無線電完成最后一百米需要更多時間。
UWB 彌合了長距離、高數(shù)據速率收發(fā)器(Wi-Fi 和 5G)與短距離低數(shù)據速率解決方案(如 BLE 和 Zigbee)之間的差距。UWB 使用快速的 2 ns 脈沖來達到數(shù)十 Mbps 的數(shù)據速率。這提供了比 BLE 短一個數(shù)量級的通話時間,達到亞毫秒級延遲。當與 5G 結合時,UWB 是提供最后 100 米低延遲連接的有力候選者。
UWB 的亞毫秒延遲和相對較大的數(shù)據速率可以實現(xiàn)多種新的交互體驗和應用,而這些體驗和應用以前是其他短距離無線電無法實現(xiàn)的。然而,UWB 的一個非常重要的方面,即物聯(lián)網革命所需的一個方面,尚未討論:低功耗操作。
低功耗是黃金
在一個一切都無線化并且所有設備都需要遠程控制的世界中,功耗的重要性正在顯著增加。
在由四部分(傳感器、微控制器、PMU 和收發(fā)器)組成的簡單傳感器節(jié)點中,無線收發(fā)器在很大程度上是總功耗的主要貢獻者。事實上,用于無線功能的功率百分比可以超過總功耗的 90%。無線耳機、游戲控制器和電腦鍵盤和鼠標的功耗由無線收發(fā)器帶來的。
在過去的 15 年中,降低功耗一直在推動無線芯片的發(fā)展。經過多年的發(fā)展,BLE于2006年被批準用于解決藍牙的功耗問題。最近,藍牙 5.2 增加了一些功能,以減少不同應用程序的消耗,包括音頻。然而,這些修改大多是漸進的。從根本上說,功耗的降低受到架構的物理限制;基于載波的收發(fā)器總是需要大量功率來啟動、穩(wěn)定和維持其 RF 振蕩器。經過二十年的優(yōu)化,藍牙已經到了收益遞減的地步。所有窄帶技術都是如此:獲得一個數(shù)量級需要無線傳輸?shù)男路妒健T蛉缦拢?/p>
在上圖中,您可以看到所有窄帶無線電架構(如藍牙)中固有的兩個顯著功率損失:
晶體振蕩器開銷(左下)削弱了低數(shù)據速率性能:藍牙使用 ~20 MHz 晶體振蕩器,需要幾毫瓦來啟動和穩(wěn)定。UWB 無線電可以使用不需要高頻晶體振蕩器的脈沖運行,并且可以設計為以低定時功耗開銷運行。
載波開銷(中上)會影響高數(shù)據速率性能:如第 4 部分所述,在窄帶寬信道(例如藍牙無線電中使用的信道)上傳輸大量數(shù)據需要大量時間和功率??梢詡鬏敶罅繑?shù)據當分布在寬帶寬上時速度要快得多,使發(fā)射器保持開啟的持續(xù)時間要短得多,并顯著降低功耗。這意味著對于相同的消耗功率,UWB 可以傳輸更多的數(shù)據。(最右上角)
如果你從頭開始設計一個短距離 (50-100m) 無線協(xié)議,以最大限度地減少功耗和延遲并最大限度地提高數(shù)據速率,您可能會經歷以下思考過程:
首先,盡量減少發(fā)射器和接收器的開機時間。為此,每個信號都應盡可能短。從時頻二元性我們知道,時間短的信號帶寬很寬,因此該解決方案將使用寬帶通信,因此選擇了免授權UWB頻譜。
其次,確保發(fā)射器和接收器能夠盡快啟動和關閉。這使得難以使用使用傳統(tǒng)高精度 RF 振蕩器的收發(fā)器。最小化功耗的最佳架構是使用 UWB 脈沖無線電,而無需 RF 載波本身。
從上圖中的數(shù)據可以看出,該方法為短距離通信提供了盡可能低的功率分布。
由于 UWB 不使用高頻載波振蕩器,因此 UWB 收發(fā)器可以非??焖俚亻_啟,并且在給定功率水平下傳輸?shù)臄?shù)據速率遠高于窄帶無線電。
秘密終于揭曉
在文章的開頭我們提了一個問題,那就是為什么蘋果 2019 年在 iPhone 11 中植入了 UWB 收發(fā)器?在 2020 年初, UWB 芯片供應商 Decawave 被Qorvo以大約5億美元的價格被收購?為什么通用汽車、福特汽車、豐田汽車、尼桑汽車、本田汽車、現(xiàn)代汽車、大眾汽車、寶馬汽車和梅賽德斯汽車等汽車制造商都在投資 UWB?
答案現(xiàn)在很清楚:UWB 提供了準確定位、超低功耗、超低延遲和高帶寬的獨特組合,這是任何其他短距離無線技術無法比擬的。2021 年的超寬帶部署側重于精確定位和基于位置的服務:安全無鑰匙進入、免提支付和室內導航。即將推出具有高達藍牙 10 倍帶寬的低功耗和無電池數(shù)據物聯(lián)網網絡。
正如大家所熟知,藍牙在低帶寬、低保真通信(例如無線耳機和耳塞)方面取得了巨大成功。那么,為什么蘋果要在 iPhone 11 中設計另一個收發(fā)器呢?那就是為超出藍牙設計限制的新興應用提供服務,尤其是準確定位。
在前文中,我們探討了像藍牙這樣的窄帶協(xié)議如何具有基本限制,這使其不如 UWB 那樣適合極低功耗、低延遲和無電池應用:
數(shù)據速率限制:藍牙規(guī)范將空中帶寬限制為僅 3 Mbps,并且在大多數(shù)系統(tǒng)中限制為小于 1 Mbps。UWB 可以以數(shù)十 Mbps 的速度運行。
低數(shù)據速率功率:即使在最低數(shù)據速率下,振蕩器開銷和長數(shù)據包持續(xù)時間也可將藍牙的最小功率保持在幾毫瓦。為低功耗操作和數(shù)據流量身定制的 UWB可以以低于 10 μW 的速度傳輸 1 kbps,從而使由能量收集供電的無電池傳感器成為可能。
延遲:藍牙延遲通常超過 100 毫秒,耳機用戶將其視為回聲、長時間的音頻延遲和通話時互相交談。這種延遲使得藍牙對于游戲控制器和 AR/VR 等交互式應用沒有吸引力,對于工業(yè)傳感器和控制系統(tǒng)來說也是不可接受的。UWB 為近實時機器控制和交互式娛樂系統(tǒng)提供亞毫秒級延遲。
定位:定位服務和精準定位是UWB眾所周知的強項,可以在10厘米精度內測量相對位置。這是藍牙無法實現(xiàn)的,它很難獲得幾米以下的精度。
抗干擾性:3-10 GHz 頻段變得擁擠。除了LTE、5G和WiFi,包括最近發(fā)布的WiFi 6E,都占據了這個頻譜的不同部分。實現(xiàn)穩(wěn)健的 UWB 通信是可能的,但必須謹慎完成,以便在不妨礙所有其他基于載波的信號并有效拒絕它們的情況下運行。
事實上,對于短距離、低功耗的應用,UWB 優(yōu)于 WLAN 和 Zigbee 以及經典的藍牙和 BLE:
此圖表比較了 Zigbee、BLE 和 UWB 的 200kbps 完整鏈路的能效:
當您將激勵和穩(wěn)定載波頻率以及傳輸窄帶數(shù)據所需的所有功耗加起來時,總和比 UWB 高 1-2 個數(shù)量級(專為低功率運行而設計)。
今天的 UWB 與 100 年前的火花隙前輩不同。盡管自近一個世紀前火花隙消失以來窄帶無線電一直主導著通信,但超寬帶正處于大規(guī)模復興的開始。畢竟,它是大約 20 年來第一個包含在智能手機中的新的未經許可的頻譜無線技術,其他手機制造商也紛紛效仿蘋果公司的做法。UWB 的“超能力”直接解決了窄帶無法提供的新應用的功率、帶寬和延遲需求。UWB 非常適合主導許多新興的低功耗、低延遲、更高數(shù)據速率的應用,并為無電池應用鋪平道路。