應(yīng)用

技術(shù)

物聯(lián)網(wǎng)世界 >> 物聯(lián)網(wǎng)新聞 >> 物聯(lián)網(wǎng)熱點(diǎn)新聞
企業(yè)注冊個人注冊登錄

云計(jì)算/霧計(jì)算/邊緣計(jì)算/MIST計(jì)算,物聯(lián)網(wǎng)算法詳細(xì)解析

2019-01-11 10:10 互聯(lián)網(wǎng)

導(dǎo)讀:從物聯(lián)網(wǎng)從業(yè)者的角度來看,經(jīng)??吹綄τ?jì)算更加可用和分布式的需求。當(dāng)開始將物聯(lián)網(wǎng)與OT和IT系統(tǒng)整合時(shí),面臨的第一個問題是設(shè)備發(fā)送到服務(wù)器的龐大數(shù)據(jù)量。


從物聯(lián)網(wǎng)從業(yè)者的角度來看,經(jīng)??吹綄τ?jì)算更加可用和分布式的需求。當(dāng)開始將物聯(lián)網(wǎng)與OT和IT系統(tǒng)整合時(shí),面臨的第一個問題是設(shè)備發(fā)送到服務(wù)器的龐大數(shù)據(jù)量。 在一個工廠自動化的場景中,可能有數(shù)百個集成的傳感器,這些傳感器每1秒發(fā)送3個數(shù)據(jù)點(diǎn)。大部分的傳感器數(shù)據(jù)在5秒鐘之后就完全沒用了。 數(shù)百個傳感器,多個網(wǎng)關(guān),多個進(jìn)程,和多個系統(tǒng),需要幾乎在瞬間處理這些數(shù)據(jù)。

大多數(shù)數(shù)據(jù)處理的支持者都支持云模型,即總是應(yīng)該向云發(fā)送一些東西。 這也是第一種物聯(lián)網(wǎng)計(jì)算基礎(chǔ)。



1. 物聯(lián)網(wǎng)的云計(jì)算

通過物聯(lián)網(wǎng)和云計(jì)算模型,基本上推動和處理你的感官數(shù)據(jù)在云。 你有一個攝入模塊,它可以接收數(shù)據(jù)并存儲在一個數(shù)據(jù)湖(一個非常大的存儲器) ,然后對它進(jìn)行并行處理(它可以是 Spark,Azure HD Insight,Hive,等等) ,然后使用快節(jié)奏的信息來做決定。

自從開始構(gòu)建物聯(lián)網(wǎng)解決方案,現(xiàn)在有了許多新的產(chǎn)品和服務(wù),可以非常容易地做到這一點(diǎn):

可以使用 AWS Kinesis 和 Big data lambda services

可以利用 Azure 的生態(tài)系統(tǒng),讓構(gòu)建大數(shù)據(jù)能力變得極其容易

或者,可以使用像 Google Cloud 產(chǎn)品這樣的工具如Cloud IoT Core

在物聯(lián)網(wǎng)中面臨的一些挑戰(zhàn)是:

私有平臺的使用者和企業(yè)對于擁有他們的數(shù)據(jù)在谷歌,微軟,亞馬遜等感到不舒服

延遲和網(wǎng)絡(luò)中斷問題

增加了存儲成本、數(shù)據(jù)安全性和持久性

通常,大數(shù)據(jù)框架不足以創(chuàng)建一個能夠滿足數(shù)據(jù)需求的大型攝入模塊



2. 面向物聯(lián)網(wǎng)的霧計(jì)算

通過霧計(jì)算,可以變得更加強(qiáng)大。 霧計(jì)算使用的是本地處理單元或計(jì)算機(jī),而不是將數(shù)據(jù)一路發(fā)送到云端并等待服務(wù)器處理和響應(yīng)。

4-5年前,還沒有像 Sigfox 和 LoraWAN 那樣的無線解決方案,BLE也沒有mesh或遠(yuǎn)程功能。因此,必須使用更昂貴的網(wǎng)絡(luò)解決方案,以確保能夠建立一個安全,持久的連接到數(shù)據(jù)處理單元。 這個中心單元是解決方案的核心,很少有專業(yè)的解決方案提供商。

從實(shí)施一個霧網(wǎng)絡(luò)中可以了解到:

這并不是很簡單,需要知道和理解很多事情。構(gòu)建軟件,或者說在物聯(lián)網(wǎng)上所做的,是更直接和開放的。 而且,當(dāng)把網(wǎng)絡(luò)當(dāng)成一道屏障時(shí),它會降低速度。

對于這樣的實(shí)現(xiàn),需要一個非常大的團(tuán)隊(duì)和多個供應(yīng)商。 通常也會面臨供應(yīng)商的鎖定。

OpenFog是一個由著名業(yè)內(nèi)人士開發(fā)的專為霧計(jì)算架構(gòu)而設(shè)計(jì)的開放霧計(jì)算框架。 它提供了用例,試驗(yàn)臺,技術(shù)規(guī)格, 還有一個參考體系結(jié)構(gòu)。



3. 物聯(lián)網(wǎng)邊緣計(jì)算

物聯(lián)網(wǎng)是關(guān)于捕捉微小的交互作用,并盡可能快地做出反應(yīng)。 邊緣計(jì)算離數(shù)據(jù)源最近,能夠在傳感器區(qū)域應(yīng)用機(jī)器學(xué)習(xí)。 如果陷入了邊緣和霧計(jì)算的討論,應(yīng)該明白,邊緣計(jì)算是所有關(guān)于智能傳感器節(jié)點(diǎn)的應(yīng)用,而霧計(jì)算仍然是關(guān)于局域網(wǎng)絡(luò),可以為數(shù)據(jù)量大的操作提供計(jì)算能力。

像微軟和亞馬遜這樣的行業(yè)巨頭已經(jīng)發(fā)布了 Azure IoT Edge 和 AWS Green Gas,用于提高物聯(lián)網(wǎng)網(wǎng)關(guān)和傳感器節(jié)點(diǎn)上的機(jī)器智能,這些網(wǎng)關(guān)和傳感器節(jié)點(diǎn)擁有良好的計(jì)算能力。 雖然這些都是非常好的解決方案,可以讓工作變得非常簡單,但是它顯著地改變了從業(yè)者所知道和使用的邊緣計(jì)算的含義。

邊緣計(jì)算不應(yīng)該要求機(jī)器學(xué)習(xí)算法在網(wǎng)關(guān)上運(yùn)行來構(gòu)建智能。 2015年,Alex 在 ECI 會議上談到了嵌入式人工智能在神經(jīng)記憶處理器上的工作:

真正的邊緣計(jì)算將發(fā)生在這樣的神經(jīng)元裝置上,它們可以預(yù)裝機(jī)器學(xué)習(xí)算法,服務(wù)于單一的目的和責(zé)任。 那會很棒嗎? 讓我們假設(shè)倉庫的結(jié)束節(jié)點(diǎn)可以對很少的幾個關(guān)鍵字符串執(zhí)行本地 NLP,這些關(guān)鍵字符串構(gòu)成密碼,比如"芝麻開門"!

這種邊緣設(shè)備通常有一個類似神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu),所以當(dāng)加載一個機(jī)器學(xué)習(xí)算法的時(shí)候,基本上就是在里面燃燒了一個神經(jīng)網(wǎng)絡(luò)。 但這種燃燒是永久性的,無法逆轉(zhuǎn)。

有一個全新的嵌入式設(shè)備空間,可以在低功率傳感器節(jié)點(diǎn)上促進(jìn)嵌入式邊緣智能。



4. 物聯(lián)網(wǎng)的 MIST 計(jì)算

可以做以下事情來促進(jìn)物聯(lián)網(wǎng)的數(shù)據(jù)處理和智能化:

基于云計(jì)算的模型

基于霧的計(jì)算模型

邊緣計(jì)算模型

這里有一種計(jì)算機(jī)類型,它補(bǔ)充了霧和邊緣計(jì)算,使它們變得更好,而不需要再等上年。 可以簡單地引入物聯(lián)網(wǎng)設(shè)備的網(wǎng)絡(luò)功能,分配工作負(fù)載,既沒有霧也沒有邊緣計(jì)算提供的動態(tài)智能模型。

建立這種模式可以帶來高速的數(shù)據(jù)處理和智能提取的設(shè)備,具有256kb 的內(nèi)存大小和 ~ 100kb / 秒的數(shù)據(jù)傳輸速率。 對于 Mesh 網(wǎng)絡(luò),肯定會看到這樣一個計(jì)算模型的促進(jìn)者,會有人提出一個更好的基于 MIST 系統(tǒng)的模型,可以很容易地使用它。